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A better understanding of the inflammatory, procoagulant, and 

immunosuppressive aspects of sepsis has contributed to rational therapeu-
tic plans from which several important themes emerge.1 First, rapid diagno-

sis (within the first 6 hours) and expeditious treatment are critical, since early, goal-
directed therapy can be very effective.2 Second, multiple approaches are necessary 
in the treatment of sepsis.1 Third, it is important to select patients for each given 
therapy with great care, because the efficacy of treatment — as well as the likeli-
hood and type of adverse results — will vary, depending on the patient.

THE SPEC T RUM OF SEPSIS

Nomenclature is important when it helps us understand the pathophysiology of a 
disease. This is true for sepsis, since nomenclature has informed the design of ran-
domized, controlled trials and, ultimately, the prognosis of sepsis. Sepsis is defined 
as suspected or proven infection plus a systemic inflammatory response syndrome 
(e.g., fever, tachycardia, tachypnea, and leukocytosis).3 Severe sepsis is defined as sepsis 
with organ dysfunction (hypotension, hypoxemia, oliguria, metabolic acidosis, throm-
bocytopenia, or obtundation). Septic shock is defined as severe sepsis with hypoten-
sion, despite adequate fluid resuscitation. Septic shock and multiorgan dysfunction 
are the most common causes of death in patients with sepsis.4 The mortality rates 
associated with severe sepsis and septic shock are 25 to 30%5 and 40 to 70%,6 respec-
tively.

There are approximately 750,000 cases of sepsis a year in the United States,7 and 
the frequency is increasing, given an aging population with increasing numbers of 
patients infected with treatment-resistant organisms, patients with compromised im-
mune systems, and patients who undergo prolonged, high-risk surgery.7

PATHOPH YSIOL O GY

Sepsis is the culmination of complex interactions between the infecting microorgan-
ism and the host immune, inflammatory, and coagulation responses.8 The rationale 
for the use of therapeutic targets in sepsis has arisen from concepts of pathogenesis 
(Table 1).

Both the host responses and the characteristics of the infecting organism influ-
ence the outcome of sepsis. Sepsis with organ dysfunction occurs primarily when host 
responses to infection are inadequate. In addition, sepsis often progresses when the 
host cannot contain the primary infection, a problem most often related to charac-
teristics of the microorganism, such as a high burden of infection and the presence 
of superantigens and other virulence factors, resistance to opsonization and phago-
cytosis, and antibiotic resistance.
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INNATE IMMUNITY AND INFLAMMATION 
IN EARLY SEPSIS

Host defenses can be categorized according to in-
nate and adaptive immune system responses. The 
innate immune system responds rapidly by means 
of pattern-recognition receptors (e.g., toll-like re-
ceptors [TLRs]) that interact with highly conserved 
molecules present in microorganisms10 (Fig. 1). For 
example, TLR-2 recognizes a peptidoglycan of 
gram-positive bacteria, whereas TLR-4 recognizes 
a lipopolysaccharide of gram-negative bacteria 
(Fig. 1). Binding of TLRs to epitopes on microor-
ganisms stimulates intracellular signaling, increas-
ing transcription of proinflammatory molecules 
such as tumor necrosis factor α (TNF-α) and in-
terleukin-1β, as well as antiinflammatory cytokines 
such as interleukin-10.32 Proinflammatory cyto-
kines up-regulate adhesion molecules in neutro-
phils and endothelial cells. Although activated neu-
trophils kill microorganisms, they also injure 
endothelium by releasing mediators that increase 
vascular permeability, leading to the flow of pro-
tein-rich edema fluid into lung and other tissues. 
In addition, activated endothelial cells release ni-
tric oxide, a potent vasodilator that acts as a key 
mediator of septic shock.

SPECIFICITY AND AMPLIFICATION OF THE IMMUNE 
RESPONSE BY ADAPTIVE IMMUNITY

Microorganisms stimulate specific humoral and 
cell-mediated adaptive immune responses that 
amplify innate immunity. B cells release immuno-
globulins that bind to microorganisms, facilitating 
their delivery by antigen-presenting cells to natural 
killer cells and neutrophils that can kill the micro-
organisms.

T-cell subgroups are modified in sepsis. Helper 
(CD4+) T cells can be categorized as type 1 helper 
(Th1) or type 2 helper (Th2) cells. Th1 cells gen-
erally secrete proinflammatory cytokines such 
as TNF-α and interleukin-1β, and Th2 cells se-
crete antiinf lammatory cytokines such as in-
terleukin-4 and interleukin-10, depending on the 
infecting organism, the burden of infection, and 
other factors.33

DISTURBANCE OF PROCOAGULANT–
ANTICOAGULANT BALANCE

Another important aspect of sepsis is the alteration 
of the procoagulant–anticoagulant balance, with 
an increase in procoagulant factors and a decrease 
in anticoagulant factors (Fig. 2). Lipopolysaccha-
ride stimulates endothelial cells to up-regulate tis-

Table 1. Pathways and Mediators of Sepsis, Potential Treatments, and Results of Randomized, Controlled Trials (RCTs).*

Pathway Mediators Treatment Results of RCTs

Superantigens: TSST-1 Anti-TSST-1 Not evaluated

Streptococcal exotoxins (e.g., 
streptococcal pyrogenic 
exotoxin A)

Antistreptococcal exotoxins Not evaluated

Lipopolysaccharide (endotoxin) Antilipopolysaccharide9 Negative

Innate immunity TLR-2, TLR-4 TLR agonists10 and antagonists Not evaluated

Monocytes, macrophages GM-CSF, interferon gamma11 Not evaluated

Neutrophils G-CSF† Not evaluated

Adaptive immunity B cells (plasma cells and immu-
noglobulins)

IgG Not evaluated

CD4+ T cells (Th1, Th2)

Proinflammatory pathway TNF-α Anti–TNF-α13,14 Negative

Interleukin-1β Interleukin-1–receptor antagonist15 Negative

Interleukin-6 Interleukin-6 antagonist Not evaluated

Prostaglandins, leukotrienes Ibuprofen,16 high-dose corticosteroids17 Negative

Bradykinin Bradykinin antagonist18 Negative

Platelet-activating factor Platelet-activating factor acetyl hydrolase19 Negative

Proteases (e.g., elastase) Elastase inhibitor‡ Negative

Oxidants Antioxidants (e.g., N-acetylcysteine)20 Not evaluated

Nitric oxide Nitric oxide synthase inhibitor21 Negative
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sue factor, activating coagulation. Fibrinogen is 
then converted to fibrin, leading to the formation 
of microvascular thrombi and further amplifying 
injury.

Anticoagulant factors (e.g., protein C, protein S, 
antithrombin III, and tissue factor–pathway in-
hibitor) modulate coagulation. Thrombin-α binds 
to thrombomodulin to activate protein C by bind-
ing to endothelial protein C receptor.34 Activated 
protein C inactivates factors Va35 and VIIIa36 and 
inhibits the synthesis of plasminogen-activator in-
hibitor 1.37 Activated protein C decreases apopto-
sis,38 adhesion of leukocytes,39 and cytokine pro-
duction.40

Sepsis lowers levels of protein C, protein S, 
antithrombin III, and tissue factor–pathway in-
hibitor.41 Lipopolysaccharide and TNF-α decrease 
the synthesis of thrombomodulin and endothelial 
protein C receptor, impairing the activation of 
protein C,42 and increase the synthesis of plas-

minogen-activator inhibitor 1, thus impairing fi-
brinolysis.

Key to an understanding of sepsis is the recog-
nition that the proinflammatory and procoagulant 
responses can be amplified by secondary ischemia 
(shock) and hypoxia (lung injury) through the re-
lease of tissue factor and plasminogen-activator 
inhibitor 1.43

IMMUNOSUPPRESSION AND APOPTOSIS 
IN LATE SEPSIS

Host immunosuppression has long been consid-
ered a factor in late death in patients with sepsis,44 
since the sequelae of anergy, lymphopenia,45 hypo-
thermia, and nosocomial infection all appear to 
be involved.46 When stimulated with lipopolysac-
charide ex vivo, monocytes from patients with sep-
sis express lower amounts of proinflammatory cy-
tokines than do monocytes from healthy subjects, 
possibly indicating relative immunosuppression.47

Table 1. (Continued.)

Pathway Mediators Treatment Results of RCTs

Procoagulant pathway Decreased protein C Activated protein C5 Positive

Decreased protein S Protein S22 Not evaluated

Decreased antithrombin III Antithrombin III23 Negative

Decreased tissue factor–
pathway inhibitor

Tissue factor–pathway inhibitor24 Negative

Increased tissue factor Tissue factor antagonist25 Not evaluated

Increased plasminogen-
activator inhibitor 1 

Tissue plasminogen activator Not evaluated

Antiinflammatory Interleukin-10 Interleukin-10§ Not evaluated

TNF-α receptors TNF-α receptors13 Negative

Hypoxia Hypoxia-inducing factor 1α, 
vascular endothelial growth 
factor

Early, goal-directed therapy2

Supernormal oxygen delivery
Erythropoietin26

Positive
Negative
Not evaluated

Immunosuppression or 
apoptosis

Lymphocyte apoptosis Anticaspases27 Not evaluated

Apoptosis of intestinal 
epithelial cells

Anticaspases27 Not evaluated

Endocrine Adrenal insufficiency Corticosteroids28 Mixed results¶

Vasopressin deficiency Vasopressin29 Not evaluated

Hyperglycemia Intensive insulin therapy30,31 Not evaluated∥

* TSST denotes staphylococcal toxic shock syndrome toxin 1, GM-CSF granulocyte–macrophage colony-stimulating factor, G-CSF granulocyte 
colony-stimulating factor, Th1 type 1 helper T cells, and Th2 type 2 helper T cells. Organism features means components of bacteria that are 
toxic to the host and that are potential therapeutic targets in sepsis.

† G-CSF is effective in patients with sepsis who have profound neutropenia.12

‡ Elastase inhibitor was ineffective in a phase 2 trial involving patients with acute lung injury.
§ Interleukin-10 was ineffective in a phase 2 trial involving patients with acute lung injury.
¶ Corticosteroids had no effect on overall 28-day mortality but decreased mortality in a subgroup of patients with no response to corticotropin 

(see text for details). Additional trials of corticosteroids in patients with septic shock are in progress.
∥ Intensive insulin therapy decreased the mortality rate among critically ill surgical patients but has not yet been evaluated in patients with sepsis.
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Multiorgan dysfunction in sepsis may be caused, 
in part, by a shift to an antiinflammatory pheno-
type and by apoptosis of key immune, epithelial, 
and endothelial cells. In sepsis, activated helper 
T cells evolve from a Th1 phenotype, producing 
proinflammatory cytokines, to a Th2 phenotype, 
producing antiinflammatory cytokines.48 In ad-
dition, apoptosis of circulating and tissue lympho-
cytes (B cells and CD4+ T cells) contributes to 
immunosuppression.49 Apoptosis is initiated by 
proinflammatory cytokines, activated B and T cells, 
and circulating glucocorticoid levels, all of which 
are increased in sepsis.50 Increased levels of TNF-α 

and lipopolysaccharide during sepsis may also 
induce apoptosis of lung and intestinal epithe-
lial cells.51

SEPSIS AND WIDESPREAD ORGAN DYSFUNCTION 

The altered signaling pathways in sepsis ultimate-
ly lead to tissue injury and multiorgan dysfunction. 
For example, cardiovascular dysfunction is charac-
terized by circulatory shock and the redistribution 
of blood flow, with decreased vascular resistance, 
hypovolemia, and decreased myocardial contrac-
tility associated with increased levels of nitric ox-
ide,52 TNF-α,53 interleukin-6,54 and other media-

Binding of 
lipopolysaccharide of 
gram-negative bacilli

Binding of 
peptidoglycan of 

gram-positive bacilli

Release of NF-κB 
and transfer to 

nucleus

Transcription of 
immunomodulatory cytokines 

(TNF-α, interleukin-1β, 
interleukin-10)

Increased 
activity of iNOS

Increased NO

Endothelium

TLR-2

TLR-4

CD14

Vasodilation

Sepsis
Activation and 

binding of 
macrophage

Prostaglandins
Leukotrienes

Proteases
Oxidants

NF-κB

NO

Figure 1. Inflammatory Responses to Sepsis.

Sepsis initiates a brisk inflammatory response that directly and indirectly causes widespread tissue injury. Shown 
here are key components of this process and their interactions at the level of the microvasculature of a representa-
tive vital organ. Gram-positive and gram-negative bacteria, viruses, and fungi have unique cell-wall molecules called 
pathogen-associated molecular patterns that bind to pattern-recognition receptors (toll-like receptors [TLRs]) on the 
surface of immune cells. The lipopolysaccharide of gram-negative bacilli binds to lipopolysaccharide-binding pro-
tein, CD14 complex. The peptidoglycan of gram-positive bacteria and the lipopolysaccharide of gram-negative bacte-
ria bind to TLR-2 and TLR-4, respectively. Binding of TLR-2 and TLR-4 activates intracellular signal-transduction 
pathways that lead to the activation of cytosolic nuclear factor κB (NF-κB). Activated NF-κB moves from the cyto-
plasm to the nucleus, binds to transcription initiation sites, and increases the transcription of cytokines such as tu-
mor necrosis factor α (TNF-α), interleukin-1β, and interleukin-10. TNF-α and interleukin-1β are proinflammatory 
cytokines that activate the adaptive immune response but also cause both direct and indirect host injury. Interleu-
kin-10 is an antiinflammatory cytokine that inactivates macrophages and has other antiinflammatory effects. Sepsis 
increases the activity of inducible nitric oxide synthase (iNOS), which increases the synthesis of nitric oxide (NO), a 
potent vasodilator. Cytokines activate endothelial cells by up-regulating adhesion receptors and injure endothelial 
cells by inducing neutrophils, monocytes, macrophages, and platelets to bind to endothelial cells. These effector 
cells release mediators such as proteases, oxidants, prostaglandins, and leukotrienes. Key functions of the endothe-
lium are selective permeability, vasoregulation, and provision of an anticoagulant surface. Proteases, oxidants, pros-
taglandins, and leukotrienes injure endothelial cells, leading to increased permeability, further vasodilation, and al-
teration of the procoagulant–anticoagulant balance. Cytokines also activate the coagulation cascade. 
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tors. Respiratory dysfunction is characterized by 
increased microvascular permeability, leading to 
acute lung injury. Renal dysfunction in sepsis, as 
discussed recently by Schrier and Wang,55 may be 
profound, contributing to morbidity and mortality.

TR E ATMEN T ACCOR DING T O THE 

e a r ly a nd l ater S TAGES OF SEPSIS

Consensus guidelines for the management of sep-
sis have recently been published.56 The following 
therapeutic plan, informed by such guidelines, 
considers emergency care for the early stage of sep-
sis (0 to 6 hours) and treatment for patients in later 
stages who require critical care.

Early, Goal-directed Therapy

The cornerstone of emergency management of sep-
sis is early, goal-directed therapy,2 plus lung-pro-
tective ventilation,1 broad-spectrum antibiotics,57,58 
and possibly activated protein C5 (Fig. 3 and Ta-
ble 2). Rivers and colleagues2 conducted a random-
ized, controlled trial in which patients with severe 
sepsis and septic shock received early, goal-direct-
ed, protocol-guided therapy during the first 6 hours 
after enrollment or the usual therapy. In the group 
receiving early, goal-directed therapy, central ve-
nous oxygen saturation was monitored continu-
ously with the use of a central venous catheter. The 
level of central venous oxygen saturation served to 
trigger further interventions recommended in the 
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Activated 
protein C

Endothelium

Thrombin-α

Thrombin-α

Fibrin

t-PA

Fibrinogen

Protein S
Protein C
EPCR

Thrombomodulin
Platelets
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Antithrombin III
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Figure 2. Procoagulant Response in Sepsis.

Sepsis initiates coagulation by activating endothelium to increase the expression of tissue factor. Activation of the 
coagulation cascade, and especially factors Va and VIIIa, leads to the formation of thrombin-α, which converts fi-
brinogen to fibrin. Fibrin binds to platelets, which in turn adhere to endothelial cells, forming microvascular throm-
bi. Microvascular thrombi amplify injury through the release of mediators and by microvascular obstruction, which 
causes distal ischemia and tissue hypoxia. Normally, natural anticoagulants (protein C and protein S), antithrombin 
III, and tissue factor–pathway inhibitor (TFPI) dampen coagulation, enhance fibrinolysis, and remove microthrombi. 
Thrombin-α binds to thrombomodulin on endothelial cells, which dramatically increases activation of protein C to 
activated protein C. Protein C forms a complex with its cofactor protein S. Activated protein C proteolytically inacti-
vates factors Va and VIIIa and decreases the synthesis of plasminogen-activator inhibitor 1 (PAI-1). In contrast, sep-
sis increases the synthesis of PAI-1. Sepsis also decreases the levels of protein C, protein S, antithrombin III, and 
TFPI. Lipopolysaccharide and tumor necrosis factor α (TNF-α) decrease the synthesis of thrombomodulin and en-
dothelial protein C receptor (EPCR), thus decreasing the activation of protein C. Sepsis further disrupts the protein 
C pathway because sepsis also decreases the expression of EPCR, which amplifies the deleterious effects of the sep-
sis-induced decrease in levels of protein C. Lipopolysaccharide and TNF-α also increase PAI-1 levels so that fibrino-
lysis is inhibited. The clinical consequences of the changes in coagulation caused by sepsis are increased levels of 
markers of disseminated intravascular coagulation and widespread organ dysfunction. t-PA denotes tissue plasmin-
ogen activator.
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Identify SIRS
Complete blood count
White-cell differential

Identify source of infection
Culture and sensitivity, Gram’s 

staining of blood, sputum, urine;
perhaps other fluids and CSF

Chest radiography
Ultrasonography, CT

Assess organ function
Renal function

Electrolytes, BUN, creatinine
Hepatic function

Bilirubin, AST, alkaline phos-
phatase

Coagulation
INR, PTT, platelets

Identify SIRS (on the basis of ≥2
of the following)

Increased heart rate (>90/min)
Increased respiratory rate   

(>20/min) or PaCO2 <32 mm Hg 
 or use of mechanical ventilation

Increased temperature (>38°C) 
or decreased temperature
(<36°C)

Increased white-cell count
(>12,000/mm3) or decreased
white-cell count (<4000/mm3)

Identify source of infection
Respiratory (pneumonia, empyema)
Abdominal (peritonitis, abscess,

cholangitis)
Skin (cellulitis, fasciitis)
Pyelonephritis
CNS (meningitis, brain abscess)

Assess organ function
CNS

LOC, focal signs
Renal function

Urinary output

Start drug therapy
Broad-spectrum antibiotics 
Consider APC if  

APACHE II score ≥25
Failure of  ≥2 organs 

Consider hydrocortisone

Control the source of sepsis
Abscess, empyema
Cholecystitis, cholangitis
Urinary obstruction
Peritonitis, bowel infarct
Necrotizing fasciitis
Gas gangrene

Measure
Arterial blood gas values
Arterial lactate

Assess airway
Assess breathing

Respiratory rate
Signs of respiratory distress
Pulse oximetry

Circulation
Heart rate, blood pressure
Skin
Jugular venous pressure

Assess airway intubation for 
high-risk patients

Assess breathing
Administer oxygen
Maintain tidal volume of 6 ml/kg

of IBW if mechanical ventila-
tion needed

Assess circulation (follow protocol
of Rivers et al.2)

Fluids, vasopressors, inotropes,
transfusion

MAP >65 mm Hg
CVP 8–12 mm Hg
Hematocrit >30% 
ScvO2 >70%

Clinical Evaluation Laboratory Evaluation Management 

Figure 3. Therapeutic Plan Based on the Early and Later Stages of Sepsis.

In the author’s approach, emergency management should focus on simultaneous evaluation and resuscitation. Ear-
ly diagnosis is critical because of the efficacy of early, goal-directed therapy in the first 6 hours.2 Critical care man-
agement requires frequent, thorough reassessment and supportive measures for organ dysfunction. Assessment 
focuses on refinement of the antibiotic regimen, control of the source of sepsis, and evaluation for resolution of the 
signs of the systemic inflammatory response syndrome (SIRS). Supportive measures for organ dysfunction include 
ongoing cardiovascular support, continued use of lung-protective mechanical ventilation with a tidal volume of 6 ml 
per kilogram of ideal body weight (IBW),1 and activated protein C (APC) in appropriate patients for 96 hours. The 
use of vasopressin, intensive insulin, and corticosteroids is controversial. Critical care management of sepsis also 
requires attention to new problems such as immunosuppression, nosocomial infection, and persistent ARDS. 
PaCO2 denotes partial pressure of arterial carbon dioxide, CNS central nervous system, LOC level of consciousness, 
CSF cerebrospinal fluid, CT computed tomography, BUN blood urea nitrogen, AST serum aspartate aminotransfer-
ase, INR international normalized ratio, PTT partial-thromboplastin time, MAP mean arterial pressure, CVP central 
venous pressure, and ScvO2 central venous oxygen saturation.
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protocol. Crystalloids were administered to main-
tain central venous pressure at 8 to 12 mm Hg. 
Vasopressors were added if the mean arterial pres-
sure was less than 65 mm Hg; if central venous 
oxygen saturation was less than 70%, erythrocytes 
were transfused to maintain a hematocrit of more 
than 30%. Dobutamine was added if the central 
venous pressure, mean arterial pressure, and he-
matocrit were optimized yet venous oxygen satu-
ration remained below 70%. Early, goal-directed 
therapy in that study decreased mortality at 28 and 
60 days as well as the duration of hospitalization. 
Patients in the early, goal-directed therapy group 
received more fluids, transfusions, and dobutamine 
in the first 6 hours, whereas control subjects re-
ceived more fluids and more control subjects re-
ceived vasopressors, transfusion, and mechani-
cal ventilation for a period of 7 to 72 hours. The 
mechanisms of the benefit of early, goal-directed 
therapy are unknown but may include reversal of 
tissue hypoxia and a decrease in inflammation 
and coagulation defects.59

VENTILATION

Once early, goal-directed therapy has been initiat-
ed, lung-protective ventilation should be consid-
ered. Acute lung injury often complicates sepsis, 
and lung-protective ventilation — meaning the use 
of relatively low tidal volumes — is thus another 
important aspect of management. Furthermore, 
lung-protective ventilation decreases mortality1 
and is beneficial in septic acute lung injury.60 Ex-
cessive tidal volume and repeated opening and 
closing of alveoli during mechanical ventilation 
cause lung injury. Lung-protective mechanical ven-
tilation, with the use of a tidal volume of 6 ml per 
kilogram of ideal body weight (or as low as 4 ml 
per kilogram if the plateau pressure exceeds 30 
cm H

2
O) as compared with 12 ml per kilogram of 

ideal body weight (calculated in men as 50 + 0.91 
[height in centimeters – 152.4] and in women as 
45.5 + 0.91 [height in centimeters – 152.4]) has been 
shown to decrease the mortality rate (from 40 to 
31%), to lessen organ dysfunction, and to lower 
levels of cytokines.61 Positive end-expiratory pres-
sure (PEEP) decreases oxygen requirements; how-
ever, there is no significant difference in mortal-
ity between patients treated with the usual PEEP 
regimen of the Acute Respiratory Distress Syn-
drome (ARDS) Clinical Trials Network1 and those 
treated with higher PEEP levels.62

Patients receiving ventilation require appropri-
ate but not excessive sedation, given the risks of 
prolonged ventilation and nosocomial pneumo-
nia.63 Titrating sedation64 and interrupting seda-
tion daily until patients are awake63 decrease the 
risks associated with sedation. Neuromuscular 
blocking agents should be avoided to reduce the 
risk of prolonged neuromuscular dysfunction.65

BROAD-SPECTRUM ANTIBIOTICS

Because the site of infection and responsible micro-
organisms are usually not known initially in a pa-
tient with sepsis, cultures should be obtained and 
intravenous broad-spectrum antibiotics adminis-
tered expeditiously while the host immune status 
is ascertained. The rising prevalence of fungi, 
gram-positive bacteria, highly resistant gram-neg-
ative bacilli, methicillin-resistant Staphylococcus 
aureus, vancomycin-resistant enterococcus, and pen-
icillin-resistant pneumococcus,66 as well as local 
patterns of antibiotic susceptibility, should be con-
sidered in the choice of antibiotics. Observation-
al studies indicate that outcomes of sepsis67 and 
septic shock57 are worse if the causative microor-
ganisms are not sensitive to the initial antibiotic 
regimen.

ACTIVATED PROTEIN C

Once goal-directed therapy, lung-protective venti-
lation, and antibiotic therapy have been initiated, 
the use of activated protein C should be considered. 
Therapy with activated protein C (24 μg per kilo-
gram per minute for 96 hours) has been reported 
to decrease mortality 5 and to ameliorate organ dys-
function68 in patients with severe sepsis. Activated 
protein C is approved for administration to patients 
with severe sepsis and an increased risk of death 
(as indicated by an Acute Physiology and Chronic 
Health Evaluation [APACHE] II score greater than 
or equal to 25 or dysfunction of two or more or-
gans); such patients have had the greatest benefit 
— an absolute decrease in the mortality rate of 
13% — from this therapy.69 However, a subsequent 
trial of activated protein C in patients with a 
low risk of death (the Administration of Drotre-
cogin Alfa [Activated] in Early Stage Severe Sep-
sis [ADDRESS] trial) was halted after an interim 
analysis for lack of effectiveness.70 This outcome 
suggests that activated protein C is not beneficial 
in low-risk patients. The effectiveness of activat-
ed protein C does not appear to depend on the site 
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of infection or the infecting microorganism, pos-
sibly because all bacteria and fungi decrease pro-
tein C levels.71

Recent trauma or surgery (within 12 hours), 
active hemorrhage, concurrent therapeutic antico-
agulation, thrombocytopenia (defined as a plate-
let count of less than 30,000 per cubic millime-
ter), and recent stroke were exclusion criteria for 
safety reasons in the Recombinant Human Acti-
vated Protein C Worldwide Evaluation in Severe 
Sepsis (PROWESS) trial of activated protein C.5 In 
that trial, there was a trend toward a higher rate of 
serious bleeding (defined as bleeding requiring 
the transfusion of 3 U of packed red cells over 
a period of 2 days or intracranial hemorrhage) 
among patients receiving activated protein C than 
among patients in the placebo group (3.5% vs. 2%, 
P = 0.06), especially during infusion of the activated 
protein C (2.4% vs. 1%).5 Intracranial hemorrhage 
occurred in two patients who received activated 
protein C and in one who received placebo.5 In the 
Extended Evaluation of Recombinant Human Ac-
tivated Protein C United States (ENHANCE U.S.) 
trial, intracranial hemorrhage occurred in 0.6% of 
patients given activated protein C.72 Meningitis 
and severe thrombocytopenia may be risk factors 
for intracranial hemorrhage.69

When the data are examined together, activated 
protein C would appear to be cost-effective for 
patients with severe sepsis and a high risk of 
death, with the cost per quality-adjusted year of life 
gained ranging from $24,48473 to $27,400,74 which 
is similar to the costs of therapies such as organ 
transplantation75 and drug-eluting stents.76

The mechanism of action by which activated 
protein C improves the clinical outcome is un-
known. Activated protein C was shown to increase 
protein C and decrease markers of thrombin gen-
eration (e.g., d-dimer, a marker of disseminated 
intravascular coagulation) in one study.77 Although 
activated protein C prevents hypotension, it has 
little effect on coagulation in a human intrave-
nous endotoxin model of sepsis,78 suggesting that 
modulation of coagulation may not be the primary 
mechanism underlying the cardiovascular bene-
fit. Other anticoagulant therapies have included 
antithrombin III23 and tissue factor–pathway in-
hibitor,24 yet only activated protein C was effective, 
perhaps because of its complex antiinflammato-
ry,79 antiapoptotic, and anticoagulant37 actions.

treatment of ANEMIA IN SEPSIS
Anemia is common in sepsis80 in part because me-
diators of sepsis (TNF-α and interleukin-1β) de-
crease the expression of the erythropoietin gene 
and protein.81 Although treatment with recombi-
nant human erythropoietin decreases transfusion 
requirements,26 its use in randomized, controlled 
trials failed to increase survival. Erythropoietin 
takes days to weeks to induce red-cell production 
and thus may not be effective.

Two trials used different transfusion strategies 
in different stages of sepsis.2,80 Rivers et al.2 used 
a hematocrit of 30% as a threshold for transfu-
sion in early sepsis as part of a 6-hour protocol. 
Transfusion was associated with an improved out-
come. Hebert et al. compared hemoglobin values 
of 70 and 100 g per liter as a threshold for trans-
fusion later in the course of critical care.80 Patients 
were expected to stay in the intensive care unit 
(ICU) for more than 3 days, and two transfusion 
strategies were compared during their entire ICU 
stay. There was no significant difference in mor-
tality between patients who received transfusion 
on the basis of higher hemoglobin levels (100 to 
120 g per liter) and those who did so on the basis 
of lower levels (70 to 90 g per liter).80

Transfusion is worthwhile if needed during the 
emergency stage of sepsis; Rivers et al. observed 
a marked decrease in mortality when transfusion 
was provided early.2 Hebert et al. suggest main-
taining hemoglobin levels at 70 to 90 g per liter 
after the first 6 hours to decrease transfusion re-
quirements.80 (Because the protocol of Rivers et al. 
did not extend beyond 6 hours, it is not known 
whether a higher transfusion threshold would be 
useful after 6 hours.)

CORTICOSTEROIDS in PATIENTS WHO REQUIRE 
CRITICAL CARE

Although corticosteroids have been considered for 
the management of sepsis for decades, random-
ized, controlled trials suggest that an early, short 
course (48 hours) of high-dose corticosteroids does 
not improve survival in severe sepsis.82,83 Because 
adrenal insufficiency is being reconsidered as part 
of septic shock, there has been renewed interest 
in therapy with corticosteroids, with a focus on 
timing, dose, and duration. Several controversies 
over their use persist, however. First, the concept 
of adrenal insufficiency in sepsis is controversial. 
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Second, only two (of five)83 small randomized, 
controlled trials84 have shown that corticosteroid 
therapy (low-dose hydrocortisone) decreases the 
need for vasopressor support in patients with sep-
sis. Third, only one adequately powered trial 
reported a survival benefit of such treatment in 
patients who had no response to a corticotropin-
stimulation test.28

Annane and colleagues28 evaluated oliguric pa-
tients with vasopressor-dependent septic shock 
who required ventilation. Patients underwent a 
250-μg corticotrophin-stimulation test28 and were 
classified as having adrenal insufficiency (no re-
sponse) when the serum total cortisol level rose 
by less than 10 μg per deciliter.85 Patients were 
then randomly assigned to receive placebo or hy-
drocortisone plus fludrocortisone for 7 days. Cor-
ticosteroids significantly improved survival both 
in the overall cohort and in the prospectively de-
fined subgroup of patients who had no response 
to corticotropin; however, over a 28-day period, 
the difference in mortality was not significant 
(P = 0.09). Patients without a response to cortico-
tropin who received corticosteroids had signifi-
cantly lower mortality than patients who received 
placebo. Subgroup analyses provide inadequate 
evidence for a change in therapy, however, given 
the many examples of therapies that were purport-
edly successful according to subgroup analysis but 
were subsequently shown not to be useful in ade-
quately powered, randomized, controlled trials.86

Observational studies87 offer no data that indi-
cate how patients respond to corticosteroids and 
thus provide limited guidance as compared with 
randomized, controlled trials. Marik and Zaloga87 
reported that 95% of patients in septic shock had 
serum cortisol levels under 25 μg per deciliter; 
another group85 have stated that during septic 
shock, cortisol levels of less than 15 μg per deci-
liter should be used as an indicator of relative ad-
renal insufficiency.

A recent study of serum free cortisol has added 
further complexity to the diagnosis of adrenal in-
sufficiency in the critically ill.88 Serum total cor-
tisol reflects both cortisol bound to protein (corti-
sol-binding globulin and albumin) and free cortisol 
(the physiologically active form). Patients with sep-
sis who have low serum albumin levels may have 
low serum total cortisol levels (falsely suggesting 
adrenal insufficiency), despite normal or even in-
creased serum free cortisol levels (indicating truly 
normal cortisol levels) ― a relevant point because 

hypoalbuminemia is common in sepsis. Indeed, 
Hamrahian and colleagues88 reported that criti-
cally ill patients with hypoalbuminemia had cor-
ticotropin-stimulated serum total cortisol levels 
that were subnormal but corticotropin-stimulat-
ed serum free cortisol levels that were higher than 
normal. When survivors were reassessed 6 to 10 
weeks after hospital discharge, their corticotro-
pin-stimulated serum free cortisol levels had de-
clined to the normal range. Therefore, random 
and corticotropin-stimulated serum total cortisol 
levels must be interpreted cautiously in patients 
with sepsis and hypoalbuminemia. Annane and 
colleagues28 measured serum total cortisol to 
identify patients who would have a response to 
corticotropin. Further studies of corticotropin-
induced changes in serum free cortisol levels dur-
ing septic shock are needed.

Corticosteroids have also been considered for 
the treatment of persistent ARDS.89 Although 
mortality was lower among patients treated with 
methylprednisolone than among those given pla-
cebo in one small trial,89 patients in the placebo 
group crossed over to the methylprednisolone 
group. A randomized, placebo-controlled trial of 
methylprednisolone for persistent ARDS, conduct-
ed by the ARDS Network, showed no difference 
between groups in 60-day mortality.90

Corticosteroids can have important adverse 
effects in patients with sepsis, including neuro-
myopathy and hyperglycemia, as well as decreased 
numbers of lymphocytes, immunosuppression, 
and loss of intestinal epithelial cells through apo-
pto sis. The immunosuppression that accompanies 
corticosteroid use in sepsis may lead to nosoco-
mial infection and impaired wound healing.

Thus, the use of corticosteroids, as well as the 
diagnosis of adrenal insufficiency, in patients with 
sepsis is complex. Randomized, controlled trials 
indicate that early use of short-course, high-dose 
corticosteroids does not improve survival in se-
vere sepsis.

E VA LUATION A ND CON TROL 

OF THE SOURCE OF SEPSIS

Successful management of the critical care stage 
of sepsis requires support of affected organs (Fig. 
3). If a causative organism is identified (20% of 
patients with sepsis have negative cultures91), then 
the antibiotic regimen should be narrowed to de-
crease the likelihood of the emergence of resis-
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tant organisms. A thorough search for the source 
of sepsis may require imaging (e.g., ultrasonogra-
phy or computed tomography) and drainage (e.g., 
thoracentesis).

VASOPRESSIN

Vasopressin deficiency29 and down-regulation of 
vasopressin receptors92 are common in septic 
shock. Vasopressin dilates renal,93 pulmonary, ce-
rebral, and coronary94 arteries. Intravenous infu-
sion of low-dose vasopressin (0.03 to 0.04 U per 
minute) has been reported to increase blood pres-
sure, urinary output, and creatinine clearance, per-
mitting a dramatic decrease in vasopressor ther-
apy.29,95 However, vasopressin therapy may cause 
intestinal ischemia,96 decreased cardiac output,95 
skin necrosis, and even cardiac arrest, especially at 
doses greater than 0.04 U per minute.95 Virtually 
all studies of vasopressin in patients with sepsis 
have been small and have involved acute infusion 
(an infusion provided in 1 to a few hours as com-
pared with 1 or more days). Inhibition of nitric 
oxide synthase with NG-methyl-L-arginine hydro-
chloride also decreased vasopressor use but sig-
nificantly increased mortality from septic shock,21 
suggesting that apparent short-term improvement 
in surrogate markers such as hemodynamics can 
be associated with an increased risk of death.

HYPERGLYCEMIA AND INTENSIVE INSULIN THERAPY

Hyperglycemia and insulin resistance are virtually 
universal in sepsis. Hyperglycemia is potentially 
harmful because it acts as a procoagulant,97 in-
duces apoptosis,98 impairs neutrophil function, in-
creases the risk of infection, impairs wound heal-
ing, and is associated with an increased risk of 
death. Conversely, insulin can control hyperglyce-
mia and improve lipid levels99; insulin has antiin-
flammatory,100 anticoagulant, and antiapoptotic101 
actions.

The appropriate target glucose range and in-
sulin dose in patients with sepsis are unknown, 
because no randomized, controlled trial has been 
conducted to specifically study patients with sep-
sis. The results of a randomized, controlled trial 
of insulin in surgical patients suggested that in-
tensive insulin therapy might be of benefit in sep-
sis. Van den Berghe and colleagues31 randomly 
assigned critically ill surgical patients to receive 
insulin infusion to maintain blood glucose levels 
at 4.4 to 6.1 mmol per liter (intensive insulin dose) 
or 10.0 to 11.1 mmol per liter (conventional in-

sulin dose). The study involved intubated surgi-
cal patients (primarily those undergoing cardiac 
surgery), not patients with sepsis. Intensive insu-
lin therapy decreased the rate of death in the ICU, 
especially among patients who remained in the 
ICU for at least 5 days. Intensive insulin therapy 
also significantly decreased the prevalence of pro-
longed ventilatory support, renal-replacement ther-
apy, peripheral neuromuscular dysfunction, and 
bacteremia. A recent trial by the same group in 
medical ICU patients showed no significant dif-
ference in mortality with the use of intensive or 
conventional insulin therapy; intensive insulin 
therapy decreased the rate of death among patients 
who remained in the ICU for 3 or more days30 
but increased the rate of death among patients 
whose stay lasted fewer than 3 days.

The mechanisms by which intensive insulin 
therapy benefits surgical patients are not known, 
but they could include the induction of euglyce-
mia, the benefits related to increased insulin 
levels, or both.101,102 Intensive insulin therapy is 
antiinflammatory100 and protects endothelial101 
and mitochondrial103 function.

Although intensive insulin therapy appears to 
be beneficial in surgical patients, the lack of ef-
ficacy in medical patients, combined with the risks 
involved for patients who have a short stay in the 
ICU, indicates clinical equipoise and the need for 
a randomized, controlled trial in patients with 
sepsis.30,31

RENAL DYSFUNCTION AND DIALYSIS

Acute renal failure is associated with increased 
morbidity, mortality, and resource use in patients 
with sepsis.55 Continuous renal-replacement ther-
apy decreases the incidence of adverse biomarkers, 
but there is little evidence that it changes out-
comes.104 Low-dose dopamine (2 to 4 μg per ki-
logram per minute) neither decreases the need for 
renal support nor improves survival and, conse-
quently, is not recommended.105 Lactic acidosis is 
a common complication of septic shock; howev-
er, sodium bicarbonate improves neither hemo-
dynamics nor the response to vasopressor medi-
cations.106

SUPPORT A ND GENER A L C A R E

The goal of cardiovascular support should be ad-
equate perfusion, though whether it is beneficial 
to try to maintain central venous oxygen saturation 
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above 70%2 after the first 6 hours is unknown. Re-
spiratory support requires continued application 
of a tidal volume of 6 ml per kilogram and a well-
defined weaning protocol (e.g., that of the ARDS 
Clinical Trials Network1,62,90). Because sepsis in-
creases the risk of deep venous thrombosis, pro-
phylactic heparin — which can be added to acti-
vated protein C — is recommended for patients who 
do not have active bleeding or coagulopathy.107 

Enteral nutrition is important because it is gen-
erally safer and more effective than total paren-
teral nutrition.108 However, total parenteral nutri-
tion may be required in patients who have had 
abdominal sepsis, surgery, or trauma. For patients 
with sepsis who are receiving mechanical venti-
lation, stress ulcer prophylaxis with the use of 
histamine H2–receptor antagonists may decrease 
the risk of gastrointestinal hemorrhage.109 Pro-
ton-pump inhibitors may be effective but have not 
been fully evaluated for stress ulcer prophylaxis.

Use of sedation, neuromuscular-blocking agents, 
and corticosteroids should be minimized because 
they can exacerbate the septic encephalopathy, 
polyneuropathy, and myopathy of sepsis. The use 
of immune support benefits specific subgroups of 
patients with sepsis (e.g., patients with neutrope-
nia benefit from treatment with granulocyte col-
ony-stimulating factor).12 The risk of nosocomial 
infection in patients with sepsis may be decreased 
by using narrow-spectrum antibiotics, weaning 
patients from ventilation, avoiding immunosup-
pression, and removing catheters.

INEFFECTIVE THERAPIES 

Several types of therapy have proven ineffective. 
Antilipopolysaccharide therapy was ineffective,9 
perhaps because it was applied late (after the li-
popolysaccharide peak in sepsis) or because the 
antibodies used lacked the ability to neutralize li-
popolysaccharide. Numerous therapies that block 
proinflammatory cytokines have failed, perhaps 
because the approach was narrowly focused, path-
ways are redundant, or cytokines are critical to 

host defense and their blockade is excessively im-
munosuppressive.15 Ibuprofen,16 platelet-activat-
ing factor acetylhydrolase,19 bradykinin antago-
nists,18 and other therapies110 have not improved 
survival among patients with sepsis.

POTENTIAL NEW THERAPIES

Superantigens and mannose are bacterial products 
that may be potential therapeutic targets (Table 1). 
Inhibition of tissue factor, a proximal target, might 
mitigate excessive procoagulant activity. Strategies 
to boost immunity could improve the outcome of 
sepsis when applied early in sepsis if measures of 
immune competence indicate impaired immuni-
ty or when applied late in sepsis. Interferon gam-
ma improved macrophage function and increased 
survival in one study of sepsis.11 Inhibition of apo-
ptosis (e.g., with anticaspases) improved survival 
in an animal model of sepsis.27 Lipid emulsion 
(which binds and neutralizes lipopolysaccharide) 
is being evaluated in a phase 3 trial; lipids may 
modulate innate immunity by inhibiting lipopoly-
saccharide.

SUMM A R Y 

Optimal management of sepsis requires early, goal-
directed therapy; lung-protective ventilation; an-
tibiotics; and possibly activated protein C.56 The 
use of corticosteroids, vasopressin, and intensive 
insulin therapy requires further study. Later in the 
course of sepsis, appropriate management neces-
sitates organ support and prevention of nosoco-
mial infection. Studies focused on novel targets, 
mechanisms of action, and combination therapy 
may improve current treatment.
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